Learning from multi-label data with interactivity constraints: An extensive experimental study

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning from multi-label data with interactivity constraints: An extensive experimental study

Interactive classification aims at introducing user preferences in the learning process to produce individualized outcomes more adapted to each user’s behaviour than the fully automatic approaches. The current interactive classification systems generally adopt a singlelabel classification paradigm that constrains items to span one label at a time and consequently limit the user’s expressiveness...

متن کامل

An extensive experimental comparison of methods for multi-label learning

Multi-label learning has received significant attention in the research community over the past few years: this has resulted in the development of a variety of multi-label learning methods. In this paper, we present an extensive experimental comparison of 12 multi-label learning methods using 16 evaluation measures over 11 benchmark datasets. We selected the competing methods based on their pre...

متن کامل

Interactivity and e-Learning - An experimental study

Interactive features play an important role in e-learning. In this paper we report an experimental pilot study which tested e-learning units with different degrees of interactivity. A specific experimental design adapted to a blended-learning scenario was developed. Participants learned with e-learning units, dealing with different movement analysis concepts (MACs), which differ only in interac...

متن کامل

Learning from General Label Constraints

Most machine learning algorithms are designed either for supervised or for unsupervised learning, notably classification and clustering. Practical problems in bioinformatics and in vision however show that this setting often is an oversimplification of reality. While label information is of course invaluable in most cases, it would be a huge waste to ignore the information on the cluster struct...

متن کامل

Multi-Label Classification with Label Constraints

We extend the multi-label classification setting with constraints on labels. This leads to two new machine learning tasks: First, the label constraints must be properly integrated into the classification process to improve its performance and second, we can try to automatically derive useful constraints from data. In this paper, we experiment with two constraint-based correction approaches as p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems with Applications

سال: 2015

ISSN: 0957-4174

DOI: 10.1016/j.eswa.2015.03.006